Developing a new JE vaccine

- Switch the mouse brain to the Vero cell -

Shigeharu Ueda

Research Foundation for Microbial Diseases of Osaka University (BIKEN Foundation)

Osaka, Japan

Improvement of mouse brain-derived JE vaccines in Japan

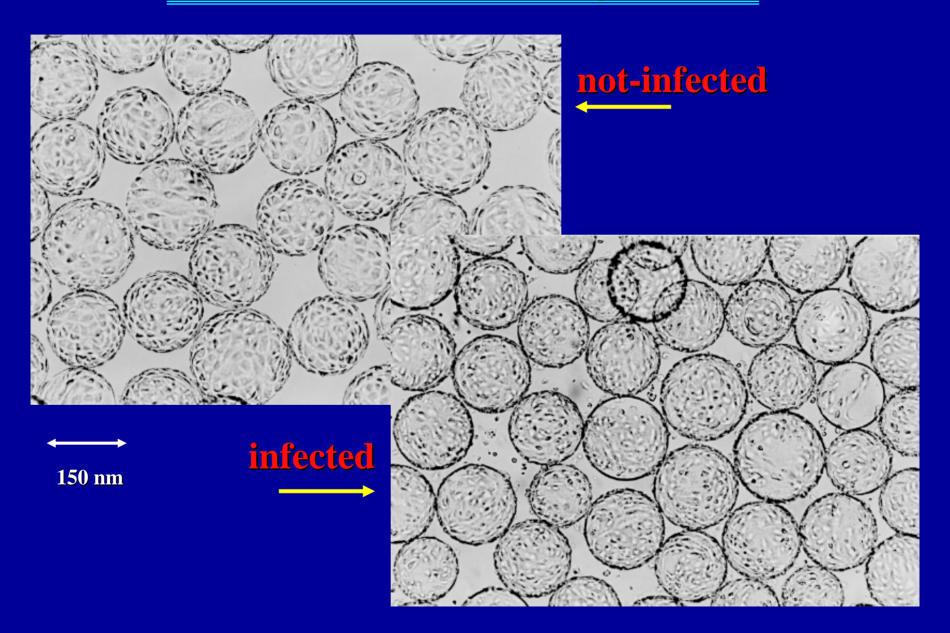
- 1954 Developed, using mouse brains
- 1965 Highly purified,
 using alcohol, protamine sulfate,
 by ultra-centrifugation
- 1988 Change of virus strain from Nakayama to Beijing

Disadvantage of using mouse brains

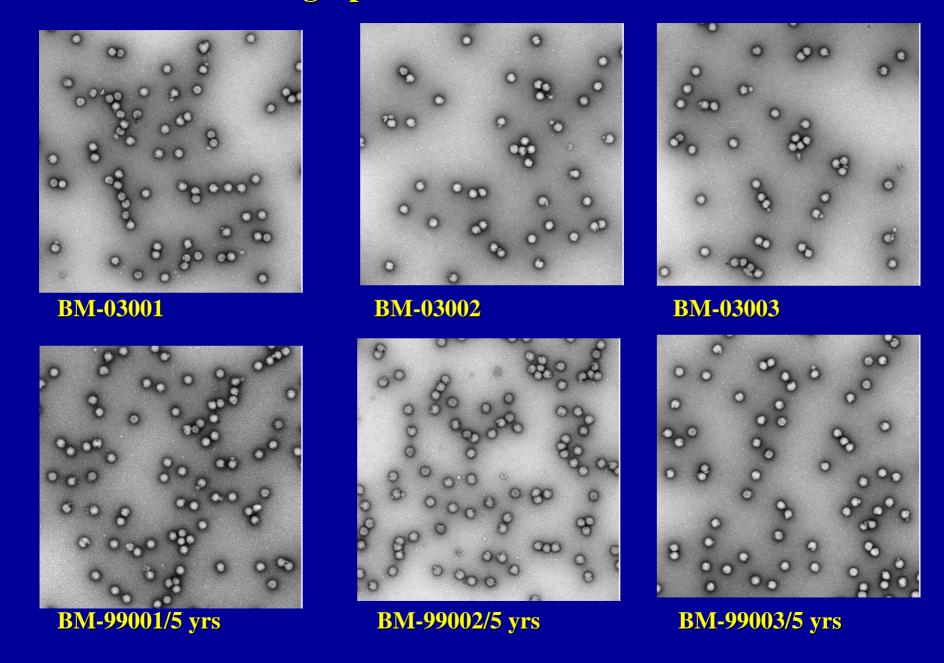
- 1. The vaccine may contain adventitious viruses.
 - difficulty in quality control
- 2. The vaccine may contain brain ingredients.
 - concerns about neurological adverse effects
- 3. We have to use great number of mice.
 - difficulties of production, against animal rights
- 4. And so on and so forth

Vero cell bank

- 1. Vero cells were purchased from American Type Culture Collection (ATCC)
- 2. A cell bank system was established by making a master cell bank and working cell banks.
- 3. The Vero cells in the cell bank system cleared the Japanese and WHO standards for vaccine production.


The seed virus strain

The Beijing strain, the same strain used for production of the existing inactivated JE vaccine, was used for production of the new vaccine under a controlled condition of the Minimum Requirements for Biological Products of Japan (Seed Lot System).


Production process

- 1. Collection of culture fluid of Vero cells infected with the Beijing strain of JE virus.
- 2. Filtration of cell debris in the culture fluid
- 3. Inactivation with formalin
- 4. Purification with protamine sulfate, by ultra-centrifugation in sucrose density gradient
- 5. Dialysis of the virus fraction
- 6. Addition of stabilizers
- 7. Filling into vials
- 8. Freeze-drying
- 9. Filling with nitrogen gas

Vero cell cultures on Cytodex 1

Electron micrographs of the Vero cell-derived JE vaccine

Formulated products

Component	BK-VJE Lyophilised	Existing vaccine Liquid	
inactivated JE virus	more than Reference		
lactose	17.86mg		
L-sodium glutamate	3.57mg		
TCM-199	1.18mg	5.5mg	
formic aldehyde	0.01mg	0.1mg	
D-sorbitol		5mg	
polysorvate		0.0015mg	
thimerosal		0.005mg	
gelatin			
term of validity	5 years	1 year	

Specification of the Final Product

Test item

BK-VJE

Existing vaccine

Sterility

Staining

Moisture contents(%)

Inactivation

TCA-protein (mcg/mL

Potency (NAb Titer in log)

pН

Residual mouse Serum(ng/dose)

Residual calf Serum (ng/dose)

Residual cellular DNA (pg/dose)

General safety Guinea pig, Mouse No evidence of microbial growth

No evidence of bacteria

No higher than 3%

No abnormal sign during the observation period

No higher than 80mcg/ml

No less than the Reference

The pH shall be within a range between 6.8 and 7.4

None

.50

.50

None

.50

Not done

None of the animals show any abnormal signs during the observation period

Pre-Clinical Study

(Safety Studies of BK-VJE vaccine)

- 1. Single-Dose Toxicity Study
- 2. Repeat-Dose Toxicity Study
- 3. Local Tolerance
- 4. General Pharmacology Study
 - 1) Effects on excretion of urine and urinary electrolytes
 - 2) Effects on respiration rate and tidal volume
- **5.Genetic Toxicity Test**
 - 1)Bacterial Reversion Assay
 - 2)Gene Mutation Study:

Using mouse lymphoma cells

The aberration by BK-VJE was not observed.

BK-VJE did not have any influence on urinary excretion and respiratory function.

The genetic toxicity was not detected in BK-VJE.

Phase I Clinical Study (BK-VJE/001)

Period : September November, 2001

Subjects : Healthy Japanese male adults

Number of subjects: BK-VJE; 17 cases

Placebo(Saline); 3 cases

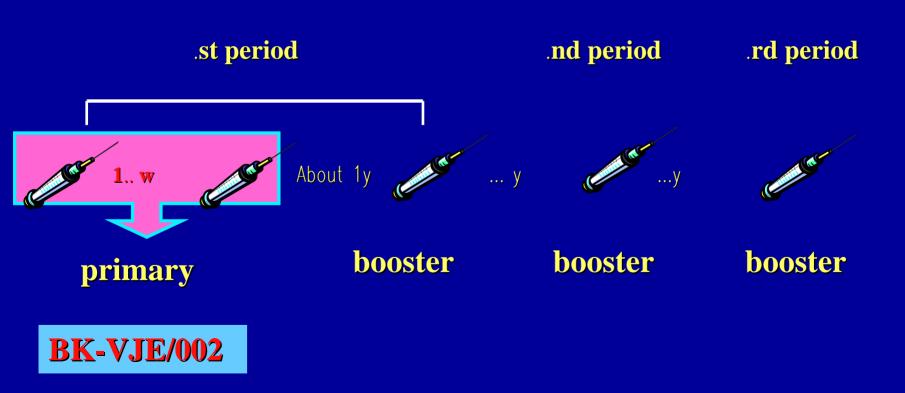
Dosage : 2 doses at 14 days interval (s.c.)

Safety : Adverse events & laboratory data

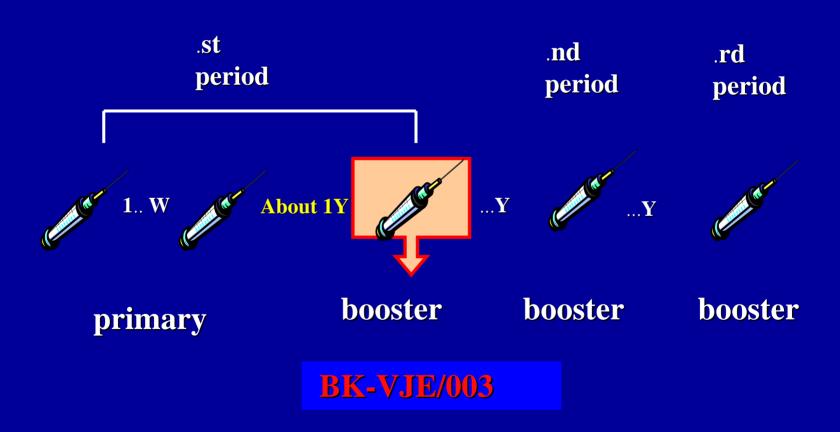
Immunogenicity: Seroconversion rate & booster effect

Adverse Reactions (phase I clinical study)

	Cases with Symptom	Degree	Onset	Therapy	Outcome	Outcome on
1	Redness at the site	mild	Day 1	none	Resolved	Day 2
2	AST	57 IU/Ľ*	Day 42	none	Resolved	Day 57
	ALT	64 IU/Ł*	Day 42	none	Resolved	Day 57
	LDH	222 IU/E*	Day 42	none	Resolved	Day 57
3	Redness at the site	mild	Day 1	none	Resolved	Day 3
4	Redness at the site	mild	Day 15	none	Resolved	Day 3
5	Redness at the site	mild	Day 1	none	Resolved	Day 2


^{*:} One day after the second injection

^{**:} Normal value AST; 10-31 IU/L, ALT; 8-52 IU/L, LDH; 95-202 IU/L


Immunogenicity: Neutralizing antibody response (Phase I Clinical Study)

	Pro	e	Post		
Group	Antibody	Number	Sero conversion	Rise of antibody	
BK-VJE	- (<20)	7	7/7 (307) .		
DIX , QL	+ (78)	10		9/10 (518)	
Placebo (Saline)	– (< 20)	1	0/1 (<20)		
	+ (100)	2		0/2 (107)	

Schedule of JE vaccination in Japan during the study

Schedule of JE vaccination in Japan during the study

Phase III Clinical Study (BK-VJE/002)

• Study Objective: Immunogenicity & Safety

• Study Design : Randomized, Single blind,

Active control

• Subjects : Healthy children of 6-90 months

• Dose / Route : 2 Doses at 1-4 weeks interval (s.c.)

Investigational

vaccine: BK-VJE 116 cases

Control vaccine: Existing vaccine 109 cases

Phase III Clinical Study (BK-VJE/003)

- Study Objective: Immunogenicity & Safety
- Study Design: Open labeled, Active control
- Subjects: Healthy children of 12-90 months (6-24 months after 2_{nd} dose in 002 trial)
- Investigational

vaccine: BK-VJE 106 cases

Control vaccine: Existing vaccine 89 cases

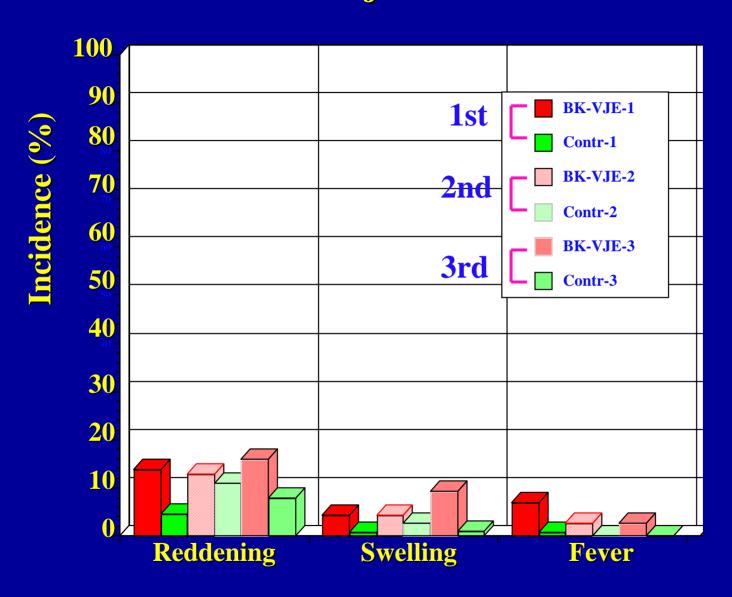
Immunogenicity and Safety of BK-VJE -Summary of Phase III Clinical Studies-

BK-VJE 116 cases $2.7 (log_{10})$

Control 108 cases $2.5 (\log_{10})$

Nt antibody titers Before the booster After the booster

BK-VJE 106 cases 2.6 (\log_{10}) 4.1 (\log_{10})


Control 89 cases 2.4 (\log_{10}) 3.9 (\log_{10})

Adverse reactions: Only temporary

Reddening, Swelling at the injection site, and

Fever in some subjects

Incidence of major adverse reactions

Next steps

We will continue clinical studies, the second-stage, with reduced amounts of the antigen in the vaccine.

I appreciate our colleagues
for developing the vaccine.
Shigeharu Ueda